Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

1,4,N-Tri-tert-butyl-2,5-bis-tert-butylimino-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrol-3-amine

Wolfgang Imhof,* Helmar Görls and Kathi Halbauer

Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany

Correspondence e-mail:
wolfgang.imhof@uni-jena.de

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.057$
$w R$ factor $=0.137$
Data-to-parameter ratio $=20.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~N}_{5}$, is the first unsymmetrically substituted tetrahydropyrrolo[3,2-b]pyrrole derivative to be structurally characterized. The bicyclic ring system with two exocyclic imine functions and one amino group is formed by the oligomerization of five tert-butyl isocyanide groups.

Comment

The reaction of metal carbonyls and tert-butyl isocyanide leads to metal(II) complexes with a mixed isocyanide-cyanide ligand environment $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right.$: Dönnecke \& Imhof, 2003; Imhof \& Halbauer, 2006; $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$: Halbauer, Dönnecke et al., 2006; $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$: Halbauer, Görls et al., 2006] which were used for the construction of coordination polymers (Halbauer, Leibeling \& Imhof, 2006). In the reaction of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$, we observed the formation of the organic side-product N, N^{\prime}-di-tert-butyl-3,5-bis-t-butylimino-4-phenylcyclopent-1-ene-1,2diamine formed from four isocyanide molecules together with an additional $\mathrm{CH}(\mathrm{Ph})$ group originating from the solvent toluene.

Starting from $\mathrm{Ni}(\operatorname{cod})_{2}\left(\right.$ cod is cyclooctadiene) as an Ni^{0} precursor we obtained crystals of another organic side product, (I), in addition to the expected coordination compounds, with a mixed cyanide-isocyanide ligand environment. The molecular structure of the title compound is depicted in Fig. 1. The bond lengths in the bicyclic ring system clearly show a bonding situation with localized single ($\mathrm{C} 1-$ $\mathrm{C} 6, \mathrm{C} 3-\mathrm{C} 4)$ and double bonds ($\mathrm{C} 2=\mathrm{C} 3, \mathrm{C} 5=\mathrm{C} 6$). The $\mathrm{C}-\mathrm{N}$ bond lengths in the pyrrolo[3,2-b]pyrrole system are also in a range typical for single bonds. Nevertheless, the bond lengths of atoms N 2 and N 5 with the bridgehead atoms C2 and C5 are shorter than the bonds with the imine atoms C 1 and C 4 . The $\mathrm{C}=\mathrm{N}$ bonds of C 1 and C 4 with the exocyclic imine N atoms are clearly double bonds. Corresponding to the bonding situation the bicyclic system is almost perfectly planar with deviations from planarity of less than $0.014 \AA$.

A Cambridge Structural Database (Version 5.26; Allen, 2002) search found only three closely related compounds. One

Received 14 November 2006
Accepted 21 November 2006

Figure 1
The molecular structure of $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~N}_{5}$ with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
of them is constructed of six isocyanide groups which are coupled at a palladium center. The difference from the title compound is that there is a second amine function at the C-4 position of the heterocycle, making the compound perfectly symmetric (Tanase et al., 1992, 1996). If the same reaction is performed under a CO atmosphere one of the imine functions is replaced by a carbonyl group (Tanase et al., 1996). Compounds with two carbonyl functions at the C-2 and C-5 positions of the heterocycle may be produced by a one-pot reaction from bis-imidoyl chlorides of oxalic acid and monoanions of acetic acid ester derivatives (Wuckelt et al., 1997). The title compound is the first unsymmetrically substituted pyrrolo[3,2-b]pyrrole derivative that has been structurally characterized.

Experimental

In a stainless steel autoclave a $106 \mathrm{mg}(0.386 \mathrm{mmol})$ sample of $\mathrm{Ni}(\operatorname{cod})_{2}$ dissolved in 4 ml of anhydrous toluene was treated with 0.39 ml (3.473 mmol) of tert-butyl isocyanide. The solution was heated to 400 K for 24 h . After the autoclave had been cooled to room temperature, the solution was transferred to a Schlenk tube and volatile material was removed in vacuo. The residue was washed with chloroform and anhydrous light petroleum (b.p. 313-333 K). Column chromatography using acetone and methanol (1:1) as eluants separated four fractions. The fourth fraction was recrystallized from methanol to produce single crystals of the title compound.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~N}_{5} \\
& M_{r}=429.69 \\
& \text { Monoclinic, } P 2_{2} / n \\
& a=11.5558(4) \AA \\
& b=17.9911(9) \AA \\
& c=12.9268(6) \AA \\
& \beta=93.9201(3)^{\circ} \AA \\
& V=2683.3(2) \AA^{3}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer $\varphi \mathrm{d}$ an ω scans
Absorption correction: none
17978 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.137$
$S=1.01$
6112 reflections
298 parameters
H atoms treated by a mixture of independent and constrained refinement

6112 independent reflections 3452 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0557 P)^{2}\right. \\
+0.3727 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

N2-C2	$1.390(2)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.417(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.445(2)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.502(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.270(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.354(2)$
N5-C5	$1.378(2)$	$\mathrm{C} 5-\mathrm{C} 2$	$1.458(2)$
N5-C4	$1.442(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.355(2)$
N4-C4	$1.268(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.466(2)$
C2-N2-C1	$106.96(13)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5$	$109.21(14)$
$\mathrm{C} 5-\mathrm{N} 5-\mathrm{C} 4$	$107.19(13)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 5$	$108.79(14)$
N4-C4-N5	$118.47(16)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$	$130.17(16)$
N4-C4-C3	$135.25(17)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$105.74(15)$
N5-C4-C3	$106.20(13)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4$	$123.37(14)$
C6-C5-N5	$142.05(17)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$118.54(15)$
C6-C5-C2	$108.76(15)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$134.26(17)$
N5-C5-C2	$108.87(14)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$	$107.19(14)$
C3-C2-N2	$141.27(17)$		

All H atoms attached to C atoms were positioned geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA(\mathrm{CH})$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})($ for CH$)$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\left(\right.$ for $\left.\mathrm{CH}_{3}\right)$. The H atom attached to nitrogen was located in a difference Fourier map and included in the subsequent refinement using restraints [$\mathrm{N}-$ $\mathrm{H}=0.86(1) \AA$] with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: $X P$ (Siemens, 1990).

KH thanks the Free State of Thuringia for a PhD grant.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Dönnecke, D. \& Imhof, W. (2003). Dalton Trans. pp. 2737-2744.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Halbauer, K., Dönnecke, D., Görls, H. \& Imhof, W. (2006). Z. Anorg. Allg. Chem. 632, 1477-1482.
Halbauer, K., Görls, H., Fidler, T. \& Imhof, W. (2006). J. Organomet. Chem. Submitted.
Halbauer, K., Leibeling, G. \& Imhof, W. (2006). Z. Anorg. Allg. Chem. 632, 264-268.
Imhof, W. \& Halbauer, K. (2006). Acta Cryst. E62, m1514-m1516.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326, New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

organic papers

Siemens (1990). XP. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tanase, T., Ohizumi, T., Kobayashi, K. \& Yamamoto, Y. (1992). Chem. Commun. pp. 707-708.

Tanase, T., Ohizumi, T., Kobayashi, K. \& Yamamoto, Y. (1996). Organometallics, 15, 3404-3411
Wuckelt, J., Döring, M., Langer, P., Görls, H. \& Beckert, R. (1997). Tetrahedron Lett. 38, 5269-5272.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

